skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aye, Sarah S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Liquid crystalline elastomers (LCEs) exhibit reversible macroscopic shape changes in response to a temperature change. Mechanistically, the thermomechanical response of LCEs is associated with the thermotropic nature of the liquid crystalline units (i.e., mesogens) in the polymer network. Upon heating, the mesogen‐mesogen interaction in the LCE is disrupted, which transitions the organization of the polymer network from an ordered to a disordered state. The disruption in order affects the volumetric distribution of macromolecular chains in the polymer network and results in a large directional contraction along the alignment axis. Prior reports detail that the magnitude of actuation depends strongly on the connectivity of LC mesogens (i.e., main‐chain or pendant) within the network. In this study, pendant end‐on mesogens are introduced into a primarily main‐chain supramolecular LCE composition to further reduce crosslink density while preserving overall LC concentration. The introduction of pendant end‐on mesogens to supramolecular LCE compositions further improves thermomechanical properties by enhancing strain‐temperature coupling and reducing actuation temperatures. By systematically varying the concentrations of end‐on and supramolecular mesogens, direct relationships are established between mesogen composition, polymer architecture, and the resulting thermomechanical performance of LCEs. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. The directional deformation of liquid crystalline elastomers (LCEs) is predicated on alignment, enforced by various processing techniques. Specifically, surface-aligned LCEs can exhibit higher temperature thermomechanical responses and weakened strain−temperature coupling in comparison to LCEs subjected to mechanical or rheological alignment. Recently, we reported enhanced stimuli response of mechanically aligned LCEs containing supramolecular liquid crystals. Here, we prepare supramolecular LCEs via surface-enforced alignment to study the impact of the supramolecular bond strength and intermolecular forces. This was evaluated using oxybenzoic acid (OBA) derivatives with and without pendant methyl groups as well as via oxybenzoic acid-pyridine complexes. Increased incorporation of supramolecular mesogens reduces the isotropic transition temperature and generally increases the strain−temperature coupling. The number of elastically active strands per unit volume, hydrogen bond conformations, and network morphology are affected by the supramolecular mesogens and influence the observed stimuli response. Overall, reduced intermolecular interactions correlate with more desirable actuation properties, demonstrating the influence of the supramolecular mesogen’s structure. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026
  3. Liquid crystalline elastomers (LCEs) prepared via thiol−ene photopolymerization result in homogeneous distribution of molecular weight between cross-links. Numerous prior reports emphasize that LCEs are material actuators that undergo a thermomechanical response associated with an order−disorder transition. However, modern and widely utilized approaches to create LCEs result in heterogeneous networks. Theoretical examination suggests that network heterogeneity and high degrees of cross-linking cause a continuous association of strain with temperature, rather than a first-order, stepwise association. Alternatively, thiol−ene photopolymerization historically yields homogeneous polymers with tailorable cross-link densities. This report extends these prior studies to formulations, which are conducive to LCE preparation. Specifically, this examination copolymerizes a liquid crystalline dialkene mesogen with a tetrathiol cross-linker and dithiol chain extender via a purely thiol−ene polymerization. Notably, this composition is amenable to surface-enforced alignment. This contribution exploits the tunability of thiol−ene photopolymerization to emphasize the influence of cross-linking on the coupling of strain and temperature. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026